When Classification becomes a Problem: Using Branch-and-Bound to Improve Classification Efficiency

نویسندگان

  • Armand Prieditis
  • Moontae Lee
چکیده

In a typical machine learning classification task there are two phases: training and prediction. This paper focuses on improving the efficiency of the prediction phase. When the number of classes is low, linear search among the classes is an efficient way to find the most likely class. However, when the number of classes is high, linear search is inefficient. For example, some applications such as geolocation or time-based classification might require millions of subclasses to fit the data. Specifically, this paper describes a branchand-bound method to search for the most likely class where the training examples can be partitioned into thousands of subclasses. To get some idea of the performance of branch-and-bound classification, we generated a synthetic set of random trees comprising billions of classes and evaluated branch-andbound classification. Our results show that branch-and-bound classification is effective when the number of classes is large. Specifically, branch-and-bound improves search efficiency logarithmically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding stability regions for preserving efficiency classification of variable returns to scale technology in data envelopment analysis

This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropria...

متن کامل

Offering a New Algorithm to Improve the Answer-Search Algorithm in Quadratic Assignment Problem

Layout design problem is one of the useful field of study used to increase the efficiency of sources in organizations. In order to achieve an appropriate layout design, it is necessary to define and solve the related nonlinear programming problems. Therefore, using computer in solving the related problems is important in the view of the researchers of this area of study. However, the designs pr...

متن کامل

QEA: A New Systematic and Comprehensive Classification of Query Expansion Approaches

A major problem in information retrieval is the difficulty to define the information needs of user and on the other hand, when user offers your query there is a vast amount of information to retrieval. Different methods , therefore, have been suggested for query expansion which concerned with reconfiguring of query by increasing efficiency and improving the criterion accuracy in the information...

متن کامل

Improving Chernoff criterion for classification by using the filled function

Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...

متن کامل

Using DEA for Classification in Credit Scoring

Credit scoring is a kind of binary classification problem that contains important information for manager to make a decision in particularly in banking authorities. Obtained scores provide a practical credit decision for a loan officer to classify clients to reject or accept for payment loan. For this sake, in this paper a data envelopment analysis- discriminant analysis (DEA-DA) approach is us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013